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A

U Classification
Given a set of Blimensional datx; € R”, i = 1,..., N
each belonging to a class 1In
calculate a mode¥l that can be used in order to predict the

label of a sampl&:.

Input: Asetofvectorx; € RP, i =1,...,N
and the corresponding labels¥ 1, e ;| 1,1, C} .

Output: The modeM, which can be a set of vectors and
scalars,e.gM ={w,,b,, k=1, éC} .




U Two-class linear classification:
U Positive and negative classes.




U Multi-class linear classification:
OMultiple classes {1, e,




U Multi-class nonlinear (kernel) classification:
OMultiple classes {1, e,




A

U Subspace learning
Given a set of Blimensional datx; € R”, i = 1,..., N
find a modeM that can be used in order to map a sampie

a ddimensional space.

Unsupervised subspace learning
Properties of data arenhanced, e.g. data variance
maximization in PCA.

Input: A set of vectorx; € RP i=1,...,N

Output: The modeM, which can be a set of vectors and
scalars,e.gM ={w,,b,, k=1, éC} .
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U Subspace learning

Given a set of Blimensional datx; € R”, i = 1,..., N
find a modeM that can be used in order to map a sampie

a ddimensional space.

Supervised subspace learning
Class discrimination is enhanced.

Input: A set of vectorx; € RP, i=1,...,N
and the corresponding labels¥ 1, e ;| 1,1, C} .

Output: The modeM, which can be a set of vectors and
scalars,e.gM ={w,,b,, k=1, éC} .
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U Semisupervised learning

Given a set of Blimensional datx; € R”, i = 1,..., N

which i s partly | abeled 1 n a
modelM that can be used in order to predict the label of a

samplex:.

Input: Asetofvectorx; € RP, i =1,...,N
and the corresponding labels¥ 1, ¢, n{ N, el, C} .

Output: The modeM, which can be a set of vectors and
scalars,e.gM ={w,,b,, k=1, éC} .



A

U Semisupervised learning

Given a set of Blimensional datx; € R”, i = 1,..., N
which i s partly | abeled 1 n a
modelM that can be used in order to predict the label of a
samplex:.

A




A

Basic formulas
U Product Rule: For two events A and B, the joint probability
P(AB) is given by:

P(A,B) = P(A|B)P(B) = P(B| A)P(A)

U Sum Rule For two events A and B, the probability of their
union is given by:

P(A+B)=P(A) +P(B)- P(AB)

U Total Probability: i f events Al, é., An

P(B) =& P(BIA)P(A)




Definitions and notation

U Let us assume that in our problem we have C possible outcomes
(events)
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Definitions and notation

u

Let us assume that in our problem we have C possible outcomes
(events)
Let us define by tthe hypothesis that theh event is true
Let us assume that we have measurements (observations) D.
These can be:

U A set of data

U Anew sample

U Both the above



Definitions and notation
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c:

Let us assume that in our problem we have C possible outcomes
(events)
Let us define by tthe hypothesis that theh event is true
Let us assume that we have measurements (observations) D.
We define:
U P(h) the prior probability of h(how probable is that h
will occur?)



Definitions and notation

u

c:

Let us assume that in our problem we have C possible outcomes
(events)
Let us define by tthe hypothesis that theh event is true
Let us assume that we have measurements (observations) D.
We define:
U P(h) the prior probability of h(how probable is that h
will occur?)
i P(D) the prior probability of D (how probable is that D
are our observations?)



A

Definitions and notation

u

c:

Let us assume that in our problem we have C possible outcomes
(events)
Let us define by tthe hypothesis that theh event is true
Let us assume that we have measurements (observations) D.
We define:
U P(h) the prior probability of h(how probable is that h
will occur?)
i P(D) the prior probability of D (how probable is that D
are our observations?)
U P(D|h) the conditional probability of D given {how
probable is to observe D if we know thahblds?)



A

Definitions and notation

u

c:

Let us assume that in our problem we have C possible outcomes
(events)
Let us define by tthe hypothesis that theh event is true
Let us assume that we have measurements (observations) D.
We define:
U P(h) the prior probability of h(how probable is that h
will occur?)
i P(D) the prior probability of D (how probable is that D
are our observations?)
U P(D|h) the conditional probability of D given {how
probable is to observe D if we know thahblds?)
U P(h|D) the posterior probability of (how probable is
that h holds, if our observations are D?)



Definitions and notation

U Let us assume that in our problem we have C possible outcomes
(events)
U Let us define by fthe hypothesis that theh event is true

HE e

Let us assume that we have measurements (observations) D.

U We define:

u

0

P(h) the prior probability of h(how probable is that h
will occur?)

P(D) the prior probability of D (how probable is that D
are our observations?)

P([D|h) the conditional probability of D given {how
probable is to observe D if we know thahblds?)

P(h |D) the posterior probability of (how probable is
that h holds, if our observations are D?)

u P(h|D) is what we would like to estimate!



Definitions and notation

U Let us assume that in our problem we have C possible outcomes
(events)

U Let us define by fthe hypothesis that theh event is true

Let us assume that we have measurements (observations) D.

U P(h|D) is what we would like to estimate!

HE e

U Bayes theorem:
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Maximum a Posteriori (MAP) hypothesis

(i Letus assume that all possible events are in H=hh B}

U Given the observations D, which is the most probable
hypothesis?
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Maximum a Posteriori (MAP) hypothesis
U Letus assume that all possible events are in H=Afh B}

U Given the observations D, which is the most probable
hypothesis?

U The hypothesis with the maximal (conditional) probability is
called MAP hypothesis:
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Maximum Likelihood

(i Letus assume that all possible events are in H=hh B}

U Given the observations D, which is the most probable

hypothesis?
U Ifwe assumethatP(h=P(h) = €)= P (
‘G AOCI0AMmO
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U One way to use the above in ML:
U Let us assume that our problem is formed by two classes

(events)
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U One way to use the above in ML:
U Let us assume that our problem is formed by two classes
U In which class should we classify a new sample?
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A

U One way to use the above in ML:
U Let us assume that our problem is formed by two classes
U In which class should we classify a new sample?
i We should calculaté "QesHO andd "QwsHO and
assign the new sample to the one providing the maximal

probability.
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U One way to use the above in ML:
U Let us assume that we have two classes
U In which class should we classify the new sample?
i We should calculaté "QesHO andd "QwsHO and
assign the new sample to the one providing the maximal
probabilityA Fit Gaussian distribution to each class
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U One way to use the above in ML:
U Let us assume that we have two classes
U In which class should we classify the new sample?
i We should calculaté "QesHO andd "QwsHO and
assign the new sample to the one providing the maximal
probabilityA Fit Gaussian distribution to each class
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U One way to use the above in ML:
U The above described approach does not involve training!
U Can we train a model which can enhance the
performance?
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U One way to use the above in ML:
U The above described approach does not involve training!
U Can we train a model which can enhance the

performance?
U Let us define a data transformation:

and calculate the distance in the new space
Q oh )=(3T7" ) (ST°)
=l ST |
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A

U W can be learned in order to maximize the training error (or

equivalently, to maximize the probability of correct
classification):

1 N
T (W, o) = 57 > ln p(yilxi)
i=1

U Gradientbased optimization:

Wi = W+ nqwVwJI

VwJ = NZZ( (c]x;) —Q)Wq:q:‘“

i=1 e=1

T. Mesnik, J. Verbeek, F. Perronnin and G. Csurka, i Di $9ased mage classification: Generalizing to new
classesatnear-zer o cos tPAMI,200BEE T

A. losifidis, A. Tefasand | . PitdaseilllDiast amoer ecogni tion using optim
Neurocomputing, 2014



U Extensions:
U Determine better vectors to represent classes

Megir = ey + Wp,v_u,cj-

N
Vi = % Zaf(l - P(C|xi))WTqu
i—1

U Alternating optimization betweéW ande .

T. Mesnik, J. Verbeek, F. Perronnin and G. Csurka, f Di $ased image classification: Generalizing to new
classesatnear-z er o c o s tPAMI,200BEEE T

A. losifidis,A. Tefasand | . Pité&®asefliDastaowmoerecognition using optim
Neurocomputing, 2014




U Extensions:
U Use multiple class representations

C.
plelxi) = Y plex)
=1

e %dw (xi*#cj}

¢ G'E _ldwlix! )
D1 D €2 il

p(cjlxi) =

T. Mesnik, J. Verbeek, F. Perronnin and G. Csurka, f Di $ased image classification: Generalizing to new
classesatnear-z er o c o s tPAMI,200BEEE T

A. losifidis,A. Tefasand | . Pité&®asefiDastaowoerecognition using
Neurocomputing, 2014
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U Linear Discriminant Analysig=ind an optimal projection that can
iIncrease class discrimination:

W™ = argmax J(W)
WTwW=I
T
T(W) = Tr(W SbW).
Tr(WTS,W)

C
SNt ZZ Xij — ;) (Xij — ;)"
1=1

=1 7=1

U W is calculated by applyingigenanalysito the matrixS = S, 1S,

( In order to solve singularity issudls= S, + ol




U Example for two classes:

s




U Example for two classes:
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u Matrix S, encodes:

A




U Matrix S, encodes:




Input space R DiscriminantspaceR d O D




U MatricesS, andS,, can be expressed by using graph
notations as:
S, = XL, X" S,=XL,XT
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U MatricesS, andS,, can be expressed by using graph
notations as:
S, = XL, X" S,=XL,XT
U The above expression is simple, yet powerful:
U Use of different ,) matrices leads to the description of

different relatlonshlps for the data (and/or classes)

U Examples:
U Linear Discriminant Analysis
U Principal Component Analysis
U Local Fisher Discriminant Analysis
U Marginal Discriminant Analysis
U ClassSpecific Discriminant Analysis

S. Yan, D. Xu, B. Zhang and H. Zhang, AaGraph
for Dimensional i t-PAMR20OucCct i ono, | EEE T

A. |l osi fidis, A. TspécihicsRefarende Discrimifant Arealgsis wifh Gdpliaadian
i n Human Behavi or-HJWSn2815y si s o, | EEE T




A

U Matrix S; (for 2-NN) encodes:
A

"
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U Ot her number of NNs can

S. Yan, D. Xu, B. Zhang and H. Zhang, #aGraph
for Dimensional i t-PAMR20OucCct i ono, | EEE T
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U Matrix S, (for 2-NN) encodes:
A

U Ot her number of NNs can

S. Yan, D. Xu, B. Zhang and H. Zhang, #aGraph
for Dimensional i t-PAMR20OucCct i ono, | EEE T




U Classspecific Discriminant Analysis:

S, SIO
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G. Goudelis, S. Zafeiriou, A. Tef as a n gpetific keirel disarsninanfiafalysisfos face
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A. |l osi fidis, A. TspécihicsRefarende Discrimifant Arealgsis wifh Gdpliaadian
i n Human Behavi or-HJSNn2015y si s o0, | EEE T




u Assumption of LDA classes follow Gaussian distributions with the
same covariance structure.
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A. |l osi fidis, A. Tefas and | . Pitas, nOn t he
IEEE T-NNLS, 2013.



u Assumption of LDA classes follow Gaussian distributions with the
same covariance structure.
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u Assumption of LDA classes follow Gaussian distributions with the
same covariance structure.
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A

u Assumption of LDA classes follow Gaussian distributions with the
same covariance structure.

U For a given projection space, the optimal class representation is
given by:

~ E S
Hit+1 = QG Ly
anNi Tw*w*T o
o i,j=1%ij YVt YVt Xij

Y p—
t C:N'

t,j=1

U Iterative optimization process for obtaining both optimal projection
and class representations.

A. |l osi fidis, A. Tefas and | . Pitas, nOn t he
IEEE T-NNLS, 2013.



Classification Rate (70) Computation Time

Data set TT:[[“;,"; gzﬁ]] ,IT:[[::,’: - g:‘:’vi]] T RT-LDA TD-LDA. RV-LDA RT-LDA | TD-LDA. | RV-LDA
Australian 1.4866 2.4259 128 | 85.92(£0.14) | 84.05 (£2.46) | 84.81 (£2.42) | 0.24ms | 0.49ms | 2.21lms
German 0.3501 1.501 431 | 72.09 (£0.53) | 72.09 (£0.53) | 76.53(£0.53) | 0.46ms | 0.77ms | 3.32ms
Heart 1.2343 2.2343 2.84 | 83.68 (£0.67) | 83.68 (£0.67) | 83.81(£0.67) | 0.12ms | 0.26ms Ims
Indians 0.4402 1.4402 5.00 | 75.87 (£0.52) | 75.87 (£0.53) 77 (£0.5) 0.2lms | 0.32ms | 1.63ms
Tonosphere 1.764 2.764 3.57 | 86.5 (+0.94) 86.5 (£0.94) 86.51 (+0.86) | 0.47ms 0.7ms 2.5ms
Iris 16.522 25.037 4 | 97.85 (£0.39) | 97.39 (£0.5) | 98.11(£0.6) | 0.07ms | 0.1lms | 0.44ms
Letter 0.7446 1.4793 5.66 | 70.19(£0.06) | 57.5 (£0.07) | 62.03 (£0.08) | 6bms 68ms | 38.54ms
Madelon 0.4253 1.4253 3.03 | 55.52 (£0.78) | 55.52 (£0.78) | 55.53 (£0.78) | 11.12s | 14.28s 43.34s
Relax 0.0415 1.414 3.73 | 44.43 (£3.28) | 44.41 (£3.2) | 69.9(£1.26) | 0.0lms | 0.19ms | 0.7lms
Sat 3.1324 7.9127 2.83 | 84.12(£0.13) | 73.41 (£0.5) | 75.36 (£0.49) | 4.29ms | 7.77ms | 22.05ms
Spect 0.4167 1.4167 377 | 72.56 (£1.28) | 72.56 (£1.28) | 8L.77(£L67) | 0.17ms | 0.3lms | L.17ms
Spectf 0.4201 1.4201 327 | 66.11 (£2.01) | 66.11 (£2.01) | 76.72(£0.13) | 0.42ms | 1.2ms | 3.93ms
Tic-tac-toe 0.069 1.07 5.80 | 57.72 (£0.77) | 57.72 (£0.77) 68 (£0.7) 0.26ms | 0.29ms | 1.7lms
Vertebral2c 0.5437 1.544 4.66 | 79.32 (£0.97) | 79.29 (£0.85) | 83.32(£0.93) | 0.lms | 0.16ms | 0.7ms
Wine 6.8345 9.8594 334 | 983 (£06) | 92.37 (£1.03) | 98.34(£0.86) | 0.1lms | 0.32ms | L.07ms

A. losifidis A. Tefas and Pitas, fAO0On the

IEEE T-NNLS, 2013.




Classification Rate (%)
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A

U Classification
Given a set of Blimensional datx; € R”, i = 1,..., N
each belonging to a class 1In
calculate a mode¥l that can be used in order to predict the

label of a sampl&:.

Input: Asetofvectorx; € RP, i =1,...,N
and the corresponding labels¥ 1, e ;| 1,1, C} .

Output: The modeM, which can be a set of vectors and
scalars,e.gM ={w,,b,, k=1, éC} .




U Nearest neighbor classifier:
U Assi gn the class of th

neighbor
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A

U Nearest neighbor classifier:
U Assi gn the class of th
neighbor
U Calculate and sort N distance values

O
O \ © o
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U Nearest class centroid classifier:
U Represent each class with a vector (usually the

class mean)
U Assi gn the class of t
vector

A

h



U Support Vector Machine:

V.Vapnik, fiStatistical Learning Theoryo, Wiley, N
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U Support Vector Machine:
U Define the hyperplane corresponding to the maximal
margin

wix +b=-1 wix+b=0 wix+b=1
U wis defined only using theupport vectors

V.Vapnik, AStatistical Learning Theoryo, Wiley, N




U Support Vector Machine:
Binary classification

min —w W —I—CZ&?

wbg

y%-(waier)Zl—&, >0 i=1,...,N

| {-1,1} are the binary labels

V.Vapnik, fiStatistical Learning Theoryo, Wiley, N




U Support Vector Machine:
Dual problem

s.t:0<U<C,

or in a matrix form;

V.Vapnik, fiStatistical Learning Theoryo, Wiley, N




