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Problems considered

ü Classification:

Given a set of D-dimensional data

each belonging to a class in a class set {1,é,C},
calculate a model M that can be used in order to predict the 

label of a sample x*. 

Input: A set of vectors 

and the corresponding labels li, i=1,é,N, li ɭ{1,é,C}.

Output: The model M , which can be a set of vectors and 

scalars, e.g. M = {wk, bk, k=1,éC}.



Problems considered

üTwo-class linear classification:

üPositive and negative classes.
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Problems considered

üMulti -class linear classification:

üMultiple classes {1,é,C}.



Problems considered

üMulti -class nonlinear (kernel) classification:

üMultiple classes {1,é,C}.



Problems considered

ü Subspace learning:

Given a set of D-dimensional data
find a model M that can be used in order to map a sample x* to

a d-dimensional space.

Unsupervised subspace learning

Properties of data are enhanced, e.g. data variance 

maximization in PCA.

Input: A set of vectors                                                 .

Output: The model M , which can be a set of vectors and 

scalars, e.g. M = {wk, bk, k=1,éC}.
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Problems considered

ü Subspace learning:

Given a set of D-dimensional data
find a model M that can be used in order to map a sample x* to

a d-dimensional space.

Supervised subspace learning

Class discrimination is enhanced.

Input: A set of vectors                                                 

and the corresponding labels li, i=1,é,N, li ɭ{1,é,C}.

Output: The model M , which can be a set of vectors and 

scalars, e.g. M = {wk, bk, k=1,éC}.
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Problems considered

ü Semi-supervised learning:

Given a set of D-dimensional data

which is partly labeled in a class set {1,é,C}, calculate a 
model M that can be used in order to predict the label of a 

sample x*. 

Input: A set of vectors 

and the corresponding labels li, i=1,é,n<N, li ɭ{1,é,C}.

Output: The model M , which can be a set of vectors and 

scalars, e.g. M = {wk, bk, k=1,éC}.



Problems considered

ü Semi-supervised learning:

Given a set of D-dimensional data

which is partly labeled in a class set {1,é,C}, calculate a 
model M that can be used in order to predict the label of a 

sample x*. 
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Bayesian Learning

Basic formulas:

ü Product Rule: For two events A and B, the joint probability 

P(AB) is given by: 

ü Sum Rule: For two events A and B, the probability of their 

union is given by:

ü Total Probability: if events A1, é., An are mutually exclusive: 
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Bayesian Learning

Definitions and notation:

ü Let us assume that in our problem we have C possible outcomes 

(events)
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Bayesian Learning

Definitions and notation:

ü Let us assume that in our problem we have C possible outcomes 

(events)

ü Let us define by hi the hypothesis that the i-th event is true

ü Let us assume that we have measurements (observations) D. 

These can be:

ü A set of data

ü A new sample

ü Both the above
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Bayesian Learning

Definitions and notation:

ü Let us assume that in our problem we have C possible outcomes 

(events)

ü Let us define by hi the hypothesis that the i-th event is true

ü Let us assume that we have measurements (observations) D.

ü P(hi |D) is what we would like to estimate!

ü Bayes theorem:

ὖὬὈ
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Bayesian Learning

Maximum a Posteriori (MAP) hypothesis

ü Let us assume that all possible events are in H = {h1, h2, é, hC}

ü Given the observations D, which is the most probable 

hypothesis?



Bayesian Learning

Maximum a Posteriori (MAP) hypothesis

ü Let us assume that all possible events are in H = {h1, h2, é, hC}

ü Given the observations D, which is the most probable 

hypothesis?

ü The hypothesis with the maximal (conditional) probability is 

called MAP hypothesis:
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Bayesian Learning

Maximum Likelihood

ü Let us assume that all possible events are in H = {h1, h2, é, hC}

ü Given the observations D, which is the most probable 

hypothesis?

ü If we assume that P(h1) = P(h2) = é = P(hC)
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Bayesian Learning

ü One way to use the above in ML:

ü Let us assume that we have two classes

ü In which class should we classify the new sample? 

ü We should calculate ὖὬȿὼᶻȟὈ and ὖὬȿὼᶻȟὈ and 

assign the new sample to the one providing  the maximal 

probability Ą Fit Gaussian distribution to each class
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Bayesian and Subspace Learning

ü One way to use the above in ML:

ü The above described approach does not involve training!

ü Can we train a model which can enhance the 

performance?



Bayesian and Subspace Learning

ü One way to use the above in ML:

ü The above described approach does not involve training!

ü Can we train a model which can enhance the 

performance?

ü Let us define a data transformation:

ώ ὡ ὼ
and calculate the distance in the new space

Ὠ ὼᶻȟ‘) = (ὼᶻī‘)(ὼᶻī‘)

= ὡ ὼzīὡ ‘
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Bayesian and Subspace Learning

ü W can be learned in order to maximize the training error (or 

equivalently, to maximize the probability of correct 

classification):

ü Gradient-based optimization:

T. Mesnik, J. Verbeek, F. Perronnin and G. Csurka, ñDistance-based image classification: Generalizing to new 

classes at near-zero costò, IEEE T-PAMI, 2013

A. Iosifidis, A. Tefasand I. Pitas, ñDistance-based action recognition using optimized class representationsò, 

Neurocomputing, 2014 



Bayesian and Subspace Learning

ü Extensions:

ü Determine better vectors to represent classes

ü Alternating optimization between W and ɛc.

T. Mesnik, J. Verbeek, F. Perronnin and G. Csurka, ñDistance-based image classification: Generalizing to new 

classes at near-zero costò, IEEE T-PAMI, 2013

A. Iosifidis, A. Tefasand I. Pitas, ñDistance-based action recognition using optimized class representationsò, 

Neurocomputing, 2014 



Bayesian and Subspace Learning

ü Extensions:

ü Use multiple class representations

T. Mesnik, J. Verbeek, F. Perronnin and G. Csurka, ñDistance-based image classification: Generalizing to new 

classes at near-zero costò, IEEE T-PAMI, 2013

A. Iosifidis, A. Tefasand I. Pitas, ñDistance-based action recognition using optimized class representationsò, 

Neurocomputing, 2014 



ü Linear Discriminant Analysis: Find an optimal projection that can 

increase class discrimination:

ü W is calculated by applying eigenanalysisto the matrix S = Sb
-1Sw

ü In order to solve singularity issues ╢b = Sb + ɔI

Standard and more recent SL methods



üExample for two classes:

Standard and more recent SL methods



üExample for two classes:

Class mean vectors

Standard and more recent SL methods



üMatrix Sw encodes:

Standard and more recent SL methods



üMatrix Sb encodes:

Standard and more recent SL methods



Input space RD Discriminant space Rd, d Ò D

Standard and more recent SL methods
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üMatrices Sb and Sw can be expressed by using graph 

notations as:

Sw = X Lw XT Sb = X Lb XT

ü The above expression is simple, yet powerful:
ü Use of different L (?) matrices leads to the description of 

different relationships for the data (and/or classes)

ü Examples:
ü Linear Discriminant Analysis

ü Principal Component Analysis

ü Local Fisher Discriminant Analysis

ü Marginal Discriminant Analysis

ü Class-Specific Discriminant Analysis

S. Yan, D. Xu, B. Zhang and H. Zhang, ñGraph Embedding and Extensions: A General Framework 

for Dimensionality Reductionò, IEEE T-PAMI, 2007.

A. Iosifidis, A. Tefas and I. Pitas, ñClass-specific Reference Discriminant Analysis with application 

in Human Behavior Analysisò, IEEE T-HMS, 2015.

Standard and more recent kernel methods



üMatrix Si (for 2-NN) encodes:

üOther number of NNs can also be used (usually NNs Ó 5).

S. Yan, D. Xu, B. Zhang and H. Zhang, ñGraph Embedding and Extensions: A General Framework 

for Dimensionality Reductionò, IEEE T-PAMI, 2007.

Standard and more recent kernel methods



üMatrix Sp (for 2-NN) encodes:

üOther number of NNs can also be used (usually NNs Ó 5).

S. Yan, D. Xu, B. Zhang and H. Zhang, ñGraph Embedding and Extensions: A General Framework 

for Dimensionality Reductionò, IEEE T-PAMI, 2007.
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üClass-specific Discriminant Analysis:

G. Goudelis, S. Zafeiriou, A. Tefas and I. Pitas, ñClass-specific kernel discriminant analysis for face 

verificationò, IEEE T-IFS, 2007.

A. Iosifidis, A. Tefas and I. Pitas, ñClass-specific Reference Discriminant Analysis with application 

in Human Behavior Analysisò, IEEE T-HMS, 2015.

Standard and more recent kernel methods

Si Sp



ü Assumption of LDA: classes follow Gaussian distributions with the 

same covariance structure.

A. Iosifidis, A. Tefas and I. Pitas, ñOn the Optimal Representation in Linear Discriminant Analysisò, 

IEEE T-NNLS, 2013.

Standard and more recent SL methods



ü Assumption of LDA: classes follow Gaussian distributions with the 

same covariance structure.

A. Iosifidis, A. Tefas and I. Pitas, ñOn the Optimal Representation in Linear Discriminant Analysisò, 

IEEE T-NNLS, 2013.

Standard and more recent SL methods



ü Assumption of LDA: classes follow Gaussian distributions with the 

same covariance structure.

A. Iosifidis, A. Tefas and I. Pitas, ñOn the Optimal Representation in Linear Discriminant Analysisò, 

IEEE T-NNLS, 2013.

Standard and more recent SL methods



ü Assumption of LDA: classes follow Gaussian distributions with the 

same covariance structure.

ü For a given projection space, the optimal class representation is 

given by:

ü Iterative optimization process for obtaining both optimal projection 

and class representations.

A. Iosifidis, A. Tefas and I. Pitas, ñOn the Optimal Representation in Linear Discriminant Analysisò, 

IEEE T-NNLS, 2013.

Standard and more recent SL methods



A. Iosifidis, A. Tefas and I. Pitas, ñOn the Optimal Representation in Linear Discriminant Analysisò, 

IEEE T-NNLS, 2013.

Standard and more recent SL methods



A. Iosifidis, A. Tefas and I. Pitas, ñOn the Optimal Representation in Linear Discriminant Analysisò, 

IEEE T-NNLS, 2013.

ORL faces

Mobiserv-AIIA actions

Standard and more recent SL methods



Classification

ü Classification:

Given a set of D-dimensional data

each belonging to a class in a class set {1,é,C},
calculate a model M that can be used in order to predict the 

label of a sample x*. 

Input: A set of vectors 

and the corresponding labels li, i=1,é,N, li ɭ{1,é,C}.

Output: The model M , which can be a set of vectors and 

scalars, e.g. M = {wk, bk, k=1,éC}.



üNearest neighbor classifier:

üAssign the class of the sampleôs nearest 

neighbor

Standard and more recent classifiers



üNearest neighbor classifier:

üAssign the class of the sampleôs nearest 

neighbor

üCalculate and sort N distance values

Standard and more recent classifiers



üNearest class centroid classifier:

üRepresent each class with a vector (usually the 

class mean)

üAssign the class of the sampleôs nearest class 

vector

Standard and more recent classifiers



üSupport Vector Machine:

V. Vapnik, ñStatistical Learning Theoryò, Wiley, New York, 1998.

Standard and more recent classifiers



üSupport Vector Machine:
ü Define the hyperplane corresponding to the maximal 

margin

ü w is defined only using the support vectors.
wTx + b = -1 wTx + b = 1wTx + b = 0

2/||w||

V. Vapnik, ñStatistical Learning Theoryò, Wiley, New York, 1998.

Standard and more recent classifiers



üSupport Vector Machine:
Binary classification

yi ɭ{ -1,1} are the binary labels

V. Vapnik, ñStatistical Learning Theoryò, Wiley, New York, 1998.

Standard and more recent classifiers



üSupport Vector Machine:
Dual problem

s.t.: 0 < Ŭi < C,

or in a matrix form:

V. Vapnik, ñStatistical Learning Theoryò, Wiley, New York, 1998.

K

Standard and more recent classifiers


